当前位置:主页 > 秋冬服装 > 流行的数据采集工具(流行的数据采集工具有哪些)(2)

流行的数据采集工具(流行的数据采集工具有哪些)(2)

时间:2023-01-30 11:06 来源:网络整理 点击:

  Flume客户端负责在事件产生的源头把事件发送给Flume的Agent。客户端通常和产生数据源的应用在同一个进程空间。常见的Flume客户端有Avro,log4J,syslog和HTTP Post。另外ExecSource支持指定一个本地进程的输出作为Flume的输入。当然很有可能,以上的这些客户端都不能满足需求,用户可以定制的客户端,和已有的FLume的Source进行通信,或者定制实现一种新的Source类型。

  同时,用户可以使用Flume的SDK定制Source和Sink。似乎不支持定制的Channel。

  2、Fluentd

  官网:

  Fluentd是另一个开源的数据收集框架。Fluentd使用C/Ruby开发,使用JSON文件来统一日志数据。它的可插拔架构,支持各种不同种类和格式的数据源和数据输出。最后它也同时提供了高可靠和很好的扩展性。Treasure Data, Inc 对该产品提供支持和维护。

  

  Fluentd的部署和Flume非常相似:

  

  Fluentd的架构设计和Flume如出一辙:

  

  Fluentd的Input/Buffer/Output非常类似于Flume的Source/Channel/Sink。

  Input

  Input负责接收数据或者主动抓取数据。支持syslog,http,file tail等。

  Buffer

  Buffer负责数据获取的性能和可靠性,也有文件或内存等不同类型的Buffer可以配置。

  Output

  Output负责输出数据到目的地例如文件,AWS S3或者其它的Fluentd。

  Fluentd的配置非常方便,如下图:

  

  Fluentd的技术栈如下图:

  

  FLuentd和其插件都是由Ruby开发,MessgaePack提供了JSON的序列化和异步的并行通信RPC机制。

  

  Cool.io是基于libev的事件驱动框架。

  FLuentd的扩展性非常好,客户可以自己定制(Ruby)Input/Buffer/Output。

  Fluentd从各方面看都很像Flume,区别是使用Ruby开发,Footprint会小一些,但是也带来了跨平台的问题,并不能支持Windows平台。另外采用JSON统一数据/日志格式是它的另一个特点。相对去Flumed,配置也相对简单一些。

  3、Logstash

  https://github.com/elastic/logstash

  Logstash是著名的开源数据栈ELK (ElasticSearch, Logstash, Kibana)中的那个L。

  Logstash用JRuby开发,所有运行时依赖JVM。

  Logstash的部署架构如下图,当然这只是一种部署的选项。

  

  一个典型的Logstash的配置如下,包括了Input,filter的Output的设置。

  

  几乎在大部分的情况下ELK作为一个栈是被同时使用的。所有当你的数据系统使用ElasticSearch的情况下,logstash是首选。

  4、Chukwa

  官网:https://chukwa.apache.org/

  Apache Chukwa是apache旗下另一个开源的数据收集平台,它远没有其他几个有名。Chukwa基于Hadoop的HDFS和Map Reduce来构建(显而易见,它用Java来实现),提供扩展性和可靠性。Chukwa同时提供对数据的展示,分析和监视。很奇怪的是它的上一次github的更新事7年前。可见该项目应该已经不活跃了。

  Chukwa的部署架构如下:

  

  Chukwa的主要单元有:Agent,Collector,DataSink,ArchiveBuilder,Demux等等,看上去相当复杂。由于该项目已经不活跃,我们就不细看了。

  5、Scribe

  代码托管:https://github.com/facebookarchive/scribe

  Scribe是Facebook开发的数据(日志)收集系统。已经多年不维护,同样的,就不多说了。

  

  6、Splunk Forwarder

  官网:

  以上的所有系统都是开源的。在商业化的大数据平台产品中,Splunk提供完整的数据采金,数据存储,数据分析和处理,以及数据展现的能力。

  Splunk是一个分布式的机器数据平台,主要有三个角色:

  Search Head负责数据的搜索和处理,提供搜索时的信息抽取。

  Indexer负责数据的存储和索引

  Forwarder,负责数据的收集,清洗,变形,并发送给Indexer

  

  Splunk内置了对Syslog,TCP/UDP,Spooling的支持,同时,用户可以通过开发Script Input和Modular Input的方式来获取特定的数据。在Splunk提供的软件仓库里有很多成熟的数据采集应用,例如AWS,数据库(DBConnect)等等,可以方便的从云或者是数据库中获取数据进入Splunk的数据平台做分析。

  这里要注意的是,Search Head和Indexer都支持Cluster的配置,也就是高可用,高扩展的,但是Splunk现在还没有针对Farwarder的Cluster的功能。也就是说如果有一台Farwarder的机器出了故障,数据收集也会随之中断,并不能把正在运行的数据采集任务Failover到其它的Farwarder上。

  总结

  我们简单讨论了几种流行的数据收集平台,它们大都提供高可靠和高扩展的数据收集。大多平台都抽象出了输入,输出和中间的缓冲的架构。利用分布式的网络连接,大多数平台都能实现一定程度的扩展性和高可靠性。

  其中Flume,Fluentd是两个被使用较多的产品。如果你用ElasticSearch,Logstash也许是首选,因为ELK栈提供了很好的集成。Chukwa和Scribe由于项目的不活跃,不推荐使用。

  Splunk作为一个优秀的商业产品,它的数据采集还存在一定的限制,相信Splunk很快会开发出更好的数据收集的解决方案。

  End.

红色染指甲款式流行(小的红染指甲)

流行的数据采集工具(流行的数据采集工具有哪些)

女靴黑色时尚(黑色的女鞋)

  • 搭配网一直为流行的你找当今最最流行好看的服装搭配,不让时尚流行的你在这个时代落伍,我们要走在流行服饰搭配的最前端!
  • 版权所有 © 2021-2024 服装搭配(JingBaJia.Com) 站点合作:350872411@qq.com
  • 所有文章来自互联网 如有异议 请与本站联系立即删除 本站为非赢利性网站 不接受任何赞助和广告
  • 京ICP备17000940号-4